Local limit of nonlocal traffic models: Convergence results and total variation blow-up
نویسندگان
چکیده
Consider a nonlocal conservation where the flux function depends on convolution of solution with given kernel. In singular local limit obtained by letting kernel converge to Dirac delta one formally recovers law. However, recent counter-examples show that in general solutions equations do not this work we focus laws modeling vehicular traffic: case, is anisotropic. We that, under fairly assumptions (anisotropic) kernel, nonlocal-to-local can be rigorously justified provided initial datum satisfies one-sided Lipschitz condition and bounded away from $0$. also exhibit counter-example showing if attains value $0$, then there are severe obstructions convergence proof.
منابع مشابه
Existence and Blow-up for a Nonlocal Degenerate Parabolic Equation
In this paper, we establish the local existence and uniqueness of the solution for the degenerate parabolic equation with a nonlocal source and homogeneous Dirichlet boundary condition. Moreover, we prove that the solution blows up in finite time and obtain the blow-up set in some special case. Mathematics Subject Classification: 35K20, 35K30, 35K65
متن کاملA note on blow-up in parabolic equations with local and localized sources
This note deals with the systems of parabolic equations with local and localized sources involving $n$ components. We obtained the exponent regions, where $kin {1,2,cdots,n}$ components may blow up simultaneously while the other $(n-k)$ ones still remain bounded under suitable initial data. It is proved that different initial data can lead to different blow-up phenomena even in the same ...
متن کاملBlow-up for Degenerate Parabolic Equations with Nonlocal Source
This paper deals with the blow-up properties of the solution to the degenerate nonlinear reaction diffusion equation with nonlocal source xut − (xux)x = ∫ a 0 u pdx in (0, a) × (0, T ) subject to the homogeneous Dirichlet boundary conditions. The existence of a unique classical nonnegative solution is established and the sufficient conditions for the solution exists globally or blows up in fini...
متن کاملBlow up problems for a degenerate parabolic equation with nonlocal source and nonlocal nonlinear boundary condition
* Correspondence: zhgs917@163. com Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang 212013, China Full list of author information is available at the end of the article Abstract This article deals with the blow-up problems of the positive solutions to a nonlinear parabolic equation with nonlocal source and nonlocal boundary condition. The blow-up and globa...
متن کاملGlobal Existence and Blow-Up Solutions and Blow-Up Estimates for Some Evolution Systems with p-Laplacian with Nonlocal Sources
This paper deals with p-Laplacian systems ut − div(|∇u|p−2∇u) = ∫ Ωv α(x, t)dx, x ∈Ω, t > 0, vt − div(|∇v|q−2∇v) = ∫ Ωu β(x, t)dx, x ∈ Ω, t > 0, with null Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ RN , where p,q ≥ 2, α,β ≥ 1. We first get the nonexistence result for related elliptic systems of nonincreasing positive solutions. Secondly by using this nonexistence result, blow ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
سال: 2021
ISSN: ['0294-1449', '1873-1430']
DOI: https://doi.org/10.1016/j.anihpc.2020.12.002